

January 13, 2016 TCC 2016-A

Correctness:
$$\mathbf{P} \equiv \mathbf{P}^*$$

Functionally equivalent.
 $\mathbf{P}(\mathbf{x}) = \mathbf{P}^*(\mathbf{x})$ for all x.

no more useful than an oracle for

Security:

Virtual Black Box Security [BGIRSVY01]

... is not achievable!

Are there special, weaker forms of obfuscation that are ...

achievable?
 interesting or useful?

- **PO** point-function obfuscation [C97, CMR98, LPS04, ...]
- **VBBO** virtual black box obfuscation [BGIRSVY01]
- **iO** indistinguishability obfuscation [BGIRSVY01, GGHRSW13, SW13, ...]
- **diO** differing-inputs obfuscation [BGIRSVY01, BCP13, ABGSZ13, ...]
- **VGBO** virtual grey box obfuscation [BC10, ...]

Virtual Grey Box Obfuscation (VGBO)

[Bitansky-Canetti-10]

VGBO evades the negative results of [BGIRSVY01].

Is VGBO Achievable?

Directly reason about the achievability of our goals,

sidestepping an involved analysis of assumptions.

Past Work on Contentions

Contentions: find another assumption **X** such that **VGBO** \leftarrow **X** \rightarrow **X**

Past work:

[BCPR14]: iO ← X → extractable one-way functions
[BM14]: iO ← X → multi-bit auxiliary-input PO
[GGHW14]: diO ← X → "special-purpose obfuscation"

Auxiliary-Input DH Inversion (AI-DHI) [Canetti '97]

Auxiliary-Input DH Inversion (AI-DHI) [Canetti '97]

VGBO vs. AI-DHI: Interpretation

VGBO and AI-DHI cannot co-exist. <u>At least</u> one does not exist. Which one is more plausible?... *Different feelings are possible...*

VGBO vs. AI-DHI: The Attack

Idea: use VGBO to break AI-DHI.

1. Sample k uniformly at random.

2. Set aux := $Obf_{VGB}(C_k)$ for C_k defined as follows:

$$C_k(g, u) = 1$$
 if $g^k = u$
 $C_k(g, u) = 0$ if $g^k ≠ u$

VGBO vs. AI-DHI: The Attack

Idea: use VGBO to break AI-DHI.

1. Sample k uniformly at random.

2. Set aux := $Obf_{VGB}(C_k)$ for C_k defined as follows:

$$C_k(g, u) = 1$$
 if $g^k = u$
 $C_k(g, u) = 0$ if $g^k ≠ u$

(1) Can distinguish between worlds:

Real world: $C_k(g, g^k) = 1$ Random world: $C_k(g, r) = 0$ (w.h.p.)

(2) Hard to extract k from $Obf_{VGB}(C_k)$:

We show that $Obf_{VGB}(C_k)$ is indistinguishable from $Obf_{VGB}(C^0)$ for $C^0(g, u) = 0$

VGBO vs. AI-DHI: The Attack

(1) Can distinguish between worlds:

Real world: $C_k(g, g^k) = 1$ Random world: $C_k(g, r) = 0$ (w.h.p.) (2) Hard to extract k from $Obf_{VGB}(C_k)$:

We show that $Obf_{VGB}(C_k)$ is indistinguishable from $Obf_{VGB}(C^0)$ for $C^0(g, u) = 0$

VGBO vs. AI-DHI: Implications

AI-DHI is the main assumption used to construct auxiliary-input point-function obfuscation (AIPO).

[BS16] Can we recover constructions of point-function obfuscation from other assumptions?

Point-Function Obfuscation (PO)

[Canetti'97, CMR98, LPS04, GK05, Wee'05, ...]

For any **target point k**, define a **point function** I_k:

$$I_{k}(x) = 1 \quad \text{if } x = k$$
$$I_{k}(x) = 0 \quad \text{if } x \neq k$$

Obfuscation:

Correctness: same as before. Security (informally): It should be hard to extract any information about k.

Point-Function Obfuscation (PO)

[Canetti'97, CMR98, LPS04, GK05, Wee'05, ...]

Yes

For any **target point k**, define a **point function** I_k :

$$I_{k}(x) = 1 \quad \text{if } x = k$$
$$I_{k}(x) = 0 \quad \text{if } x \neq k$$

Obfuscation:

Correctness: same as before. Security (informally): It should be hard to extract any information about k.

Definitional choices from prior work:

What is the distribution of k?

Is auxiliary information allowed?

Can use multiple, correlated target points?

How unpredictable is the target point, given aux? (comp., sub-exp., exp.)

Framework for Point-Function Obfuscation

Similar to frameworks used for UCE [BHK13] and (d)iO [BST14].

Target generator.

Class (set) of target generators.

IND[X]-secure Point-Function Obfuscators

Obf is **IND[X]-secure** if no adversary can distinguish between the two worlds.

Some classes of target generators:

- \mathbf{X}^{ϵ} no auxiliary information
- **X**^{cup} computationally unpredictable
- **X**^{seup} sub-exponentially unpredictable
- \mathbf{X}^{n} n correlated target points

Some notions we recover:

IND[$X^{cup} \cap X^1$] – AIPO [Canetti'97, GK05, BP14, ...] IND[$X^{cup} \cap X^{\epsilon} \cap X^1$] – basic PO [Canetti'97, ...] IND[X^{cup}] – composable AIPO [CD08, ...]

Generic constructions for PO

We provide three **generic constructions** of point-function obfuscation:

- **DPKE** Deterministic public-key encryption [BBO07, BFOR08, BS11, ...]
- **iO** Indistinguishability obfuscation [BGIRSVY01, GGHRSW13, SW13, ...]
- **OWF** One-way functions
- **UCE** Universal computational extractor [BHK13]

Generic constructions for PO

We provide three **generic constructions** of point-function obfuscation:

Brzuska-Mittelbach-15 concurrently showed a special case of our UCE construction.

- We achieve new types of PO.
- We use standard assumptions in many cases.
- Negative results follow if IND[X] is known to be impossible (e.g. the case for IND[X^{cup}]).

More impossibility results for UCE

contention regarding UCE[**S**^{s-cup}] in a **concurrent work**.

We know no applications of UCE[$S^{cup} \cap S^{splt}$].

More impossibility results for UCE

Brzuska-Mittelbach-15 obtained a similar but weaker contention regarding UCE[**S**^{s-cup}] in a **concurrent work**.

We know no applications of UCE[$S^{cup} \cap S^{splt}$].

Current state of computationally unpredictable sources, assuming iO:

Thank you!

